RECEIVED OPPT NCIC 2002 JUL 29 PM 3: 16

Criteria for Screens— Review of the EDSTAC Recommendations

Presentation to the EDMVS July 23, 2002

1

Purpose of Tier 1

- To distinguish chemical substances that interact with the endocrine system from those that do not.
- Upon completion of Tier 1 EPA and stakeholders should be able to accept the assignment that a chemical has (1) either low or no potential for EAT activity, (2) or that it has such potential.

2

EDSTAC Criteria for Screens

- Detect all known modes of action for the endocrine endpoints of concern
- Include sufficient diversity among endpoints, permitting weight-of-evidence conclusions
- Maximize sensitivity to minimize false negatives
- Include a sufficient range of taxonomic groups among the test organisms to represent differences in endocrine system and metabolism
- Relatively fast and efficient

3

Advantages of In Vitro Assays

- Sensitivity to low concentrations
- High specificity of response
- Low cost
- Small amount of chemical required
- Assays can be automated for high throughput
- Results can be used in conjunction with QSAR models
- Can be used for complex mixtures
- Reduces or replaces animal use

Ļ

Advantages of In Vivo Assays

- Account for absorption, distribution, metabolism and excretion
- Evaluate a broad range of mechanisms
- Provide a comprehensive evaluation of the whole endocrine system as a unit
- Generally well-accepted methods in toxicity testing
- Some endpoints are toxicologically relevant and have been used in hazard assessment
- Give comparative perspective to other endpoints of toxicity

:

Meeting the Screening Criteria

- Detect all known modes of action for the endocrine endpoints of concern
 - Simple mechanistic screens do not exist for all modes of action, therefore it is necessary to include more complex multi-modal assays in tier
- Include sufficient diversity among endpoints, permitting weight-of-evidence conclusions
 - Multiple endpoints in in vivo assays
 - Redundancy among endpoints across assays

i

Meeting the Screening Criteria

- Maximize sensitivity to minimize false negatives
 - In vitro mechanistic screens are highly sensitive
- Include a sufficient range of taxonomic groups among the test organisms to represent differences in endocrine system and metabolism
 - Include in vivo assay for fish; fish have different hormones; opposite end of vertebrate phylogeny
- Relatively fast and efficient
 - Maximize use of in vitro assays

7

Screens vs. Biological Activity																	
									E	E-	A	A-	Т	SSI	AI	5a	HPG
									X	X						1	
		X	X														
					X												
						X											
X	X																
X	X	•		X	X	X		X									
		X	X					LH									
X			X	X	X		X	X									
X			X	X	X	(X)	X	X									
X	X	X	X	?	X	Х		X									
				X													
	E X X X X X	E E- X X X X X X X X	E E- A X X X X X X X X X X X X	E E- A A- X X X	E E- A A- T X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	E E- A A- T SSI X X X	E E- A A- T SSI AI X X X	E E- A A- T SSI AI 5a X X X									

Conclusions

- No single assay can, at this time, meet all of the criteria for a Tier 1 screen;
- Therefore, a battery approach must be taken.
- The battery to be efficient should consist of both *in vitro* and *in vivo* assays.

9